Studentenprojekte

ETH Zurich uses SiROP to publish and search scientific projects. For more information visit sirop.org.

Contactless Fiber-Optic Photoplethysmography-based Gating for MRI

This project aims to collect diverse forehead PPG datasets using a newly developed device, to evaluate variability across populations and sensor placements and, to explore their impact on signal quality. You will apply classical signal processing and machine learning methods to extract reliable MRI triggers from the PPG signal to statistically quantify the pulse arrival time (PAT) and its variability. If time permits, you may further investigate the extraction of respiratory-modulated components from the PPG waveform.

Schlagwörter

Flow MRI, Cardiac Gating, PPG, Contactless, Fiber Optic, Signal Processing, ML

Labels

Semester Project , Bachelor Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-05-09 , Frühester Start: 2025-06-15

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Emery Sébastien

Themen Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

In-silico cardiac and cardiovascular modelling with physics informed neural networks

The aim of the project is to investigate the benefits, requirements and drawbacks of physics informed neural networks in the context of personalised cardiac and cardiovascular models

Schlagwörter

cardiac modelling, neural network, in-silico models, personalized medicine, reduced-order modelling, fluid dynamics, continuum mechanics, aortic flow

Labels

Master Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-01-17 , Frühester Start: 2020-09-01

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Buoso Stefano , Kozerke Sebastian, Prof

Themen Information, Computing and Communication Sciences , Engineering and Technology

Generation of synthetic cardiac phantoms for healthy and pathological anatomy and function using generative AI

The project focuses exploiting generative AI to build synthetic numerical phantom for cardiac anatomy and function suitable for representing population variability.

Schlagwörter

Generative models, deep learning, phantoms, variational autoencoders, cardiac mechanics, cardiac function, simulation

Labels

Master Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-01-17 , Frühester Start: 2023-07-01

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Buoso Stefano , Kozerke Sebastian, Prof

Themen Information, Computing and Communication Sciences , Engineering and Technology

JavaScript wurde auf Ihrem Browser deaktiviert