Studentenprojekte

ETH Zurich uses SiROP to publish and search scientific projects. For more information visit sirop.org.

Generation of Physics-Based Synthetic Cerebrovascular 4D Flow MRI Data

Time-resolved volumetric phase-contrast magnetic resonance imaging (4D flow MRI) offers a non-invasive method to capture in-vivo blood flow patterns in the brain. However the accuracy and precision of the measurements cannot be quantified due to the lack of paired ground truth flow data with cerebrovascular MR measurements.

Schlagwörter

4D Flow MRI, computational fluid dynamics, modeling, blood flow, meshing

Labels

Semester Project

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-12-01 , Frühester Start: 2025-12-01 , Spätestes Ende: 2026-08-01

Bewerbungen eingeschränkt auf ETH Zurich , EPFL - Ecole Polytechnique Fédérale de Lausanne , University of Lausanne , University of Geneva , University of Zurich , University of St. Gallen , University of Lucerne , University of Fribourg , University of Berne , University of Basel

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Dirix Pietro

Themen Engineering and Technology

Deep Learning-based Cardiac Diffusion Tensor Imaging Denoising and Tensor Fitting

The project aims to investigate the potential of deep learning methods for image denoising and diffusion tensor fitting in cardiac diffusion tensor imaging (cDTI). By mitigating the modality’s inherently low SNR, deep learning approaches may enable shorter scan times and facilitate the translation of cDTI from a research tool into routine clinical practice.

Schlagwörter

deep learning, cardiac diffusion tensor imaging

Labels

Semester Project , Master Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-12-01 , Frühester Start: 2026-02-01 , Spätestes Ende: 2026-09-30

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Haltmeier Sandra

Themen Engineering and Technology

Evaluating nnU-Net Robustness for Aortic and Ventricular Segmentation in heavily undersampled 3D Radial PC-bSSFP

This project evaluates how pretrained nnU-Net models perform when input images are progressively degraded to mimic the undersampling and artifacts of 3D radial PC-bSSFP, determining up to what degradation level reliable aortic and ventricular segmentation—and resulting physiological parameters—can still be obtained.

Schlagwörter

3D radial PC-bSSFP, Segmentation, nnU-Net, Deep learning, Aortic flow, Undersampling simulation

Labels

Semester Project

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-12-01 , Frühester Start: 2026-03-01 , Spätestes Ende: 2026-09-30

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Malich Jacob

Themen Engineering and Technology

Forecasting Trigger Point for Gated MRI Acquisition

The project focuses on applying and evaluating methods to forecast the next physiological gating event in time-resolved MRI using past cardiac and respiratory signals.

Schlagwörter

Dynamic MRI, Cardiac Gating, Signal Processing, Machine Learning

Labels

Semester Project , Bachelor Thesis , Master Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-12-01 , Frühester Start: 2026-02-16 , Spätestes Ende: 2026-07-31

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Emery Sébastien

Themen Information, Computing and Communication Sciences , Engineering and Technology

Using (Pre-)Balancing Gradients in 3D Radial PC-bSSFP to extract Multi-Echo Water–Fat Separated Images

This project investigates whether half-echo signals generated by pre-/rephasing gradients in 3D radial PC-bSSFP can be exploited to obtain multi-echo data for water–fat separation.

Schlagwörter

Water–fat imaging, 3D radial PC-bSSFP, Multi-echo MRI, IDEAL, 4D Flow MRI, Low-field MRI, MAP Image reconstruction, Half-echo acquisitions

Labels

Semester Project

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-12-01 , Frühester Start: 2026-03-01 , Spätestes Ende: 2026-11-30

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Malich Jacob

Themen Engineering and Technology

Physics-informed deep learning for super-resolution of 4D Flow MRI

The project focuses on applying and evaluating an existing physics-informed deep learning-based super-resolution using synthetic aortic 4D flow MRI

Schlagwörter

4D flow MRI, deep learning, medical image analysis, neural networks, physics-informed, artificial intelligence, super-resolution

Labels

Semester Project , Bachelor Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-30 , Frühester Start: 2026-01-05

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Jacobs Luuk

Themen Engineering and Technology

Learning Based Estimation of Pulse Wave Velocity from Noisy Low Resolution Data

Aortic pulse wave velocity (PWV) is a key biomarker of cardiovascular health. It can be estimated using phase-contrast (PC) MRI, with both data-driven and physics-informed neural networks, but the accuracy of these methods needs to be validated against ground truth.

Schlagwörter

reduced-order modelling, neural networks, aortic flow, pulse wave velocity, vessel compliance, physics-informed

Labels

Semester Project , Master Thesis , ETH Zurich (ETHZ)

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-28 , Frühester Start: 2025-12-01 , Spätestes Ende: 2026-09-01

Bewerbungen eingeschränkt auf ETH Zurich , EPFL - Ecole Polytechnique Fédérale de Lausanne , University of Basel , University of Berne , University of Fribourg , University of Geneva , University of Lausanne , University of Lucerne , University of St. Gallen , University of Zurich

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Dirix Pietro

Themen Engineering and Technology

Simulating Myocardial Scar Patterns for Synthetic Cardiac MRI Generation

This project aims to generate realistic myocardial scar patterns for the synthesis of LGE CMR images, with controllable parameters such as underlying pathology and patient-specific characteristics. The student will develop a controlled generation pipeline using either computational modelling techniques or machine-learning–based approaches.

Labels

Semester Project , ETH Zurich (ETHZ)

Description

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-24 , Frühester Start: 2026-02-01 , Spätestes Ende: 2026-08-31

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Margolis Isabel

Themen Medical and Health Sciences , Information, Computing and Communication Sciences , Engineering and Technology

Comparing bSSFP and GRE cine MRI for automated aortic segmentation using deep learning

The aim of this project is to quantitatively compare two image sequences commonly used in cardiac MRI by employing automated segmentation based on convolutional neural networks.

Schlagwörter

Aortic segmentation, Cardiac MRI, Deep learning, Swiss Heart Study, Medical image analysis

Labels

Semester Project

PLEASE LOG IN TO SEE DESCRIPTION

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-17 , Frühester Start: 2025-12-01 , Spätestes Ende: 2026-06-30

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Wolkerstorfer Gloria

Themen Information, Computing and Communication Sciences , Engineering and Technology

Quantification of myocardial blood perfusion from cardiac perfusion MRI using physics-informed neural networks (PINN)

Ischemia is a less-than-normal amount of blood flow to part of your body. It can happen particularly in heart and brain which causes severe life-threatening conditions. However, most of the current imaging technics only provides qualitative assessment, resulting in uncertainty in determining the severity of the disease. This study focuses on assessment of ischemia in heart muscles (myocardium) using cardiac perfusion magnetic resonance imaging (Perfusion MRI) and physics-informed neural networks (PINN) to quantify the level of perfusion in different locations of myocardium.

Schlagwörter

Image quantification, physics-informed neural networks (PINN), cardiac MRI

Labels

Semester Project

PLEASE LOG IN TO SEE DESCRIPTION

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-05 , Frühester Start: 2026-03-01 , Spätestes Ende: 2026-11-30

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Yan Chang

Themen Information, Computing and Communication Sciences , Engineering and Technology

In-silico cardiac and cardiovascular modelling with physics informed neural networks

The aim of the project is to investigate the benefits, requirements and drawbacks of physics informed neural networks in the context of personalised cardiac and cardiovascular models

Schlagwörter

cardiac modelling, neural network, in-silico models, personalized medicine, reduced-order modelling, fluid dynamics, continuum mechanics, aortic flow

Labels

Master Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-04 , Frühester Start: 2020-09-01

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Buoso Stefano , Kozerke Sebastian, Prof

Themen Information, Computing and Communication Sciences , Engineering and Technology

Digital twinning with physics-informed graph neural networks

The aim of this project is to develop an approach based on physics-based graph neural networks to generate digital twins from PC-MRI data.

Schlagwörter

Physics informed neural networks, graph neural networks, digital twins, blood flow, brain, circulatory system, AI, biophysical

Labels

Master Thesis

Description

Goal

Contact Details

Mehr Informationen

Dieses Projekt öffnen... 

Publiziert seit: 2025-11-04 , Frühester Start: 2025-11-01

Organisation(en) Cardiovascular Magnetic Resonance

Host(s) Buoso Stefano , Kozerke Sebastian, Prof

Themen Information, Computing and Communication Sciences , Engineering and Technology

JavaScript wurde auf Ihrem Browser deaktiviert